/N·20 396144 # TECHNICAL NOTE D-1162 PERFORMANCE OF SMALL (100-LB THRUST) ROCKET MOTORS USING COAXIAL INJECTION OF HYDRAZINE AND NITROGEN TETROXIDE By Joseph F. Wasserbauer and William Tabata Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON December 1961 | | | • | |--|--|---| | | | | | | | • | • | | | | | | | | • | • | | | | | | | | • | TECHNICAL NOTE D-1162 PERFORMANCE OF SMALL (100-LB THRUST) ROCKET MOTORS USING COAXIAL INJECTION OF HYDRAZINE AND NITROGEN TETROXIDE By Joseph F. Wasserbauer and William Tabata ### SUMMARY An investigation was conducted on a small (approximately 100-1b thrust) rocket using coaxial injection of hydrazine and nitrogen tetroxide. Characteristic-velocity efficiencies of 94 percent of the theoretical shifting equilibrium value were obtained at a chamber pressure of about 300 pounds per square inch using a 21-tube injector and a combustion chamber characteristic length of 10 inches. Performance at lower chamber pressures could be improved by reducing contraction ratio and thereby increasing the combustion chamber length and injector pressure drop, which would tend to promote better mixing. Calculations based on experimental data showed a vacuum specific impulse of 305 seconds with a nozzle area ratio of 50. #### INTRODUCTION Space mission studies have indicated the need for small rocket motors of low thrust (of the order of 100 lb) for attitude control, midcourse trajectory corrections, rendezvous, and so forth. For such space applications the storable liquid propellants are attractive because they indicate potential high performance, have reasonable handling and storage qualities, and are hypergolic. Accordingly, hydrazine (N2H4) and nitrogen tetroxide (N2O4) were selected as the propellants for the present study. Recent investigations of motors using coaxial injection of JP-4 fuel and liquid oxygen have indicated that high performance can be obtained with low-characteristic-length chambers (ref. l). The use of coaxial injection with storable propellants should likewise result in small effective chamber lengths without compromising performance. Therefore, an investigation was undertaken to determine the performance of N2O4 and N2H4 using the coaxial injection principle. Parameters which influence combustion performance such as the number of injection points, injection point spacing, chamber pressure, mixture ratio, and chamber characteristic length were investigated. The tests were conducted in heat-sink zirconia-coated combustion chambers with a nominal thrust level of 100 pounds. The chamber pressure was varied from approximately 100 to 300 pounds per square inch. #### APPARATUS A schematic diagram of the oxidant and fuel systems is shown in figure 1. Each system consisted of a l-cubic-foot propellant tank, a shutoff valve, a wire screen filter (160 mesh, 0.0025-in.-diam. wire), a turbine-type flowmeter, and a flow-control valve. The propellant tanks were pressurized by nitrogen. A nitrogen purge was provided for each propellant system. The hydrazine was 98.4 percent pure and the nitrogen tetroxide was 99.5 percent pure. The time histories of all data were recorded on a direct-reading oscillograph. Pressures were measured in the combustion chamber, injector, propellant tanks, and altitude chamber by pressure transducers. The propellant flows were measured by turbine-type flow-meters. The propellants were maintained at constant temperature by immersing the propellant tanks in an ice bath. Heat-sink motors with two combustion chamber diameters were used. Shown in figure 2 are the noz-zle and chamber segments for the 1.03- and 1.50-inch-diameter motors. The nozzle and chamber segments were bolted together in series to obtain variations in length. Aluminum gaskets were used as a seal between each segment. All segments of the heat-sink motor were coated with zirconia except the injector face. The chamber segments were fabricated from mild steel, whereas the nozzle segments were made from copper. The injector head assembly (fig. 3(a)) could be used with either the 1.03- or 1.50-inch-diameter chambers. The injector was designed so that the fuel flowed through the annuli and the oxidant through the center tubes. Views of injector face plate configurations with tube and orifice dimensions are shown in figure 3(b). All injectors were designed with essentially the same flow characteristics (pressure differential as function of weight flow), as shown in figure 4. As the number of injection points was increased or decreased, the hole area and annulus area for each injection point was decreased or increased, respectively, to maintain the flow characteristics of figure 4. Photographs of the various components of the 1.03- and 1.50-inch-diameter motors are shown in figure 5. #### PROCEDURE For each firing, an electronic controller was used to set mixture ratio and desired chamber pressure. The controller was programed to vary mixture ratio in five steps of about 2 seconds of firing time each or to give only one mixture-ratio setting with firing durations of 4 to 8 seconds. A typical trace for a firing at one mixture ratio is shown in figure 6. Before and after a complete run (which consisted of several firings) the nozzle throat diameter was measured to detect any erosion. If any erosion occurred, the data were corrected by assuming a linear variation of throat area with firing time. #### RESULTS AND DISCUSSION The performance was determined for a series of small (100-lb) rockets having coaxial injection by variations in motor geometry such as changing the number of injection points, spacing between the injection points, and throat contraction ratio. Experimental performance data are listed in tables I to IV for all injector and chamber configurations. The data were corrected for momentum pressure loss in the chamber, and calculations for efficiency in characteristic velocity c* were based on theoretical shifting equilibrium values. Corrections for heat loss to the chamber wall were not taken into consideration. In order to determine the number of injection points (or injection tubes) necessary for efficient operation, injectors were constructed with 45, 21, 9, and 7 tubes. Of all the injectors tested, the 21-tube (0.090-in. spacing) injector gave the best performance (fig. 7). The peak efficiency in c* of 94 percent was obtained with the 21-tube injector and remained constant for a mixture-ratio range of about 0.60 to 1.00. The performance in c* efficiency was fairly flat and varied about 4.3 percent from the peak efficiency over the mixture-ratio range investigated. At a mixture ratio of 0.78 and c* efficiency of 94 percent, the injector pressure differential ΔP was approximately 57 pounds per square inch for each propellant. This combination of high c* efficiency and equal injection pressures could simplify the design of a complete rocket system and could be achieved maintaining equal supply pressures in both propellant tanks. In this study, the number of injection points was varied from 21 to 7, 9, or 45. The data for the 7- and 45-tube injectors are presented in tables III and IV. Either reducing or increasing the number of injection points from 21 resulted in lower overall performance. It had been expected that increasing the number of injection points would give better mixing through smaller drop size (ref. 2). Rough burning and injector burnout were common for these injector configurations. The square 9-tube injector pattern apparently produced a flow of combusting gases which caused the particular lobelike injector face burnout shown in figure 8. The close injection point spacing and right angle corner between the injector face and the chamber wall probably induced flow recirculation, while the square injection point arrangement caused the particular burnout pattern. No data are presented for the 9-tube injector because of almost immediate burnout after ignition. Data presented in subsequent figures are for the 21-tube injector and a mixture-ratio range of 0.80 to 1.00, since peak performance was obtained in this range for all configurations tested. The effect of injection point spacing on efficiency at various characteristic lengths and chamber pressures for the 21-tube injector is presented in figure 9. Of the three tube spacings investigated the 0.090-inch tube spacing gave the highest performance over the range of chamber pressure and chamber characteristic length L*. As the chamber pressure increased the efficiency also increased. This might be expected, because the higher chamber pressure and the higher injector pressure drop resulting from higher propellant flows tend to promote better mixing of the propellants (refs. 3 and 4). The chamber pressures attainable with various contraction ratios were computed using continuity relations and are indicated in figure 10 for the range of propellant flows of figure 4. Contraction ratio was varied by varying throat diameter and maintaining constant chamber diameter. Figure 10 shows that, as the contraction ratio is decreased, the total propellant flow rate for a given chamber pressure is increased, and this results in higher injection pressure drops. Also, in order to maintain constant L* with decreasing contraction ratio, the chamber length was increased. Therefore, at constant L* the increased chamber length and higher injector pressure drops (terding to promote better mixing) can be used to explain the improved efficiency that is obtained at low chamber pressures (fig. 11). For the same reason there is a general trend of improved c* efficiency with increasing chamber pressure. Figure 11 also shows the effect of L* on performance. Increasing L* from 7.5 to 10 inches broadens the operating range; that is, with an L* of 7.5 inches the c* efficiency is good at the higher chamber pressures with a rapid decrease in performance as the chamber pressure is lowered. For an L* of 10 inches the decline in c* efficiency is not as rapid as the chamber pressure is lowered. There is a further slight improvement in this respect in going to an L* of 15 inches. For the best coaxial injector (21-tube, C.090-in. injection point spacing) and an L* of 10 inches, calculations were made of vacuum specific impulse based on experimental data. A vacuum thrust coefficient of 1.8, a nozzle area ratio of 50, and a ratio of specific heats of 1.30 were assumed. The results (fig. 12) showed that vacuum impulse as high as 305 seconds can be obtained using coaxial injection and low chamber characteristic lengths. For a fixed motor geometry (i.e., fixed contraction ratio) the reduction in vacuum specific impulse varied from 4.2 to 8.5 percent when chamber pressure was reduced by 33 percent at any particular oxidant-fuel ratio. This could be a desirable feature for variable-thrust motors. #### CONCLUSION An investigation was conducted on a small (approx. 100-1b thrust) rocket using coaxial injection of hydrazine and nitrogen tetroxide. Characteristic-velocity efficiencies as high as 94 percent of the theoretical shifting equilibrium values were obtained using a 21-tube injector (with 0.090-in. injection point spacing) and a combustion chamber with a characteristic length of 10 inches. Performance at lower chamber pressures could be improved by reducing contraction ratio and thereby increasing the combustion chamber length and injector pressure drop, which would tend to promote improved mixing. Calculations based on experimental data showed that a vacuum specific impulse of 305 seconds could be obtained with a nozzle area ratio of 50. Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, September 18, 1961 ## REFERENCES - 1. Stein, Samuel: A High-Performance 250-Pound-Thrust Rocket Engine Utilizing Coaxial-Flow Injection of JP-4 Fuel and Liquid Oxygen. NASA TN D-126, 1959. - 2. Priem, Richard J., and Heidmann, Marcus F.: Propellant Vaporization as a Design Criterion for Rocket-Engine Combustion Chambers. NASA TR R-67, 1960. (Supersedes NACA TN's 3883, 3985, 4098, and 4219.) - 3. Heidmann, Marcus F., and Foster, Hampton H.: Effect of Impingement Angle on Drop-Size Distribution and Spray Pattern of Two Impinging Water Jets. NASA TN D-872, 1961. - 4. Foster, Hampton H., and Heidmann, Marcus F.: Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air. NASA TN D-301, 1960. TABLE 1. - 1.50-INCH-DIAMETER CHAMBER WITH 21-TUBE INJECTOR [Spacing, 0.090 in.] | | | | (opareno) | 0.090 In.] | | | | | | |---|---|---|--|--|--|--|---|--|--| | Chamber pressure, lb/sq in. abs | Oxidant
flow,
lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteris ic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | | | | | <u> </u> | | L | characterist: c length, 5 in. | | | | | | | 243
241
237
237
246
292
292
292
292
297
294
295 | 0.180
214
.239
.264
.295
.216
.225
.230
.310
.342
.365 | 0.334
.234
.213
.203
.195
.319
.322
.324
.242
.232
.216 | 0.539
.915
1.122
1.300
1.513
.678
.699
.710
1.280
1.474
1.690 | 4280
4880
4750
4595
4550
4950
4840
4780
4875
4635
4600 | 77.5
84.1
81.8
79.1
80.7
87.3
85.0
83.8
84.4
81.8
83.3 | 32
41
54
69
74
40
45
38
74
99 | 207
102
87
82
79
193
193
190
110
108
90 | | | | | Contrac | tion rat | 10, 6.25; | characteristic 1 | ength, 1 | 0 in. | | | | | 249
249
247
250
250
247
222
222
222
222
196
192
192 | 0.178
.196
.204
.216
.243
.325
.181
.206
.202
.258
.153
.173
.230
.263 | 0.249
.240
.237
.226
.216
.207
.226
.220
.212
.195
.226
.214
.202 | 0.715
.817
.860
.956
1.125
1.570
.801
.936
.953
1.323
.677
.808
1.139
1.377 | 5410
5240
5260
5140
4900
4540
5290
5150
5130
4645
5265
5090
4480
4312 | 94.9
90.8
91.2
87.4
84.2
81.1
92.1
88.4
80.9
93.0
89.6
77.4
75.5 | 23
35
33
42
56
24
32
56
32
51
37
49
58 | 43
44
39
36
31
32
32
31
26
34
38
38
29 | | | | | Contrac | tion rat | io, 6.25; | characterist(c l | ength, 1 | 5 in. | | | | | 190
219
199
208 | 0.141
.157
.146
.200 | 0.179
.195
.174
.229 | 0.788
.805
.839
.873 | 5360
5610
5610
4375 | 93.1
97.6
97.2
75.9 | 86
94
86
48 | 88
95
87
44 | | | | | Contrac | tion rat | 10, 3.52; | characterist: c l | ength, 5 | in. | | | | | 167
163
165
165
160
165
159
155
154
164 | 0.208
.219
.228
.233
.241
.235
.248
.227
.261
.354
.297 | 0.271
.271
.266
.261
.255
.248
.250
.226
.238
.259 | 0.768
.808
.857
.893
.945
.948
.993
1.005
1.097
1.366
1.562 | 5555
5300
5330
5330
5140
5360
5090
5360
4920
4190
5050 | 97.2
92.2
92.4
92.2
88.7
92.4
87.7
92.4
85.0
73.6
90.5 | 185
46
50
52
58
175
61
178
66
136 | 179
53
52
51
50
164
47
156
43
66
135 | | | | | Contrac | tion rat | 10, 3.52; | characterist c 1 | ength, 1 | 0 in. | r- | | | | 205
216
209
209
208
209
211
193
192
193
188
134
148
146
164
159
115 | 0.247
.294
.288
.301
.334
.380
.431
.244
.260
.264
.300
.185
.216
.222
.246
.250
.160
.217 | 0.360
.336
.321
.318
.295
.281
.281
.291
.273
.257
.269
.270
.272
.263
.200
.190 | 0.686
.875
.898
.947
1.132
1.352
1.532
.720
.836
.976
1.099
.720
.803
.823
.905
.951
.800
1.143 | 5292
5370
5378
5390
5280
4955
4735
5290
5370
5360
5240
4840
4875
4740
5060
4950
5100
4595 | 93.4
92.9
93.4
93.3
94.5
93.3
92.5
93.3
92.5
93.3
93.3
93.3
93.3
93.6
84.4
87.5
93.6 | 41
65
63
71
88
109
138
52
54
61
71
45
52
54
58
61
58
45 | 61
524
560
52
421
513
601
479
611
479
611
544
535
24 | | | TABLE I. - Continued. 1.50-INCH-DIAMETER CHAMBER WITH 21-TUBE INJECTOR [Spacing, 0.090 in.] | [Spacing, 0.090 in.] | | | | | | | | | | |--|---|---|--|--|--|--|---|--|--| | Chamber pressure, lb/sq in. abs | Oxidant
flow,
lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | | | | | Contraction ratio, 3.25; characteristic length, 16 in. | | | | | | | | | | 217
214
213
211
213
162
162
162
162
162
162
119
107
114 | 0.247
.285
.300
.316
.399
.184
.218
.250
.280
.305
.332
.151
.182
.106
.277 | 0.440
.381
.360
.344
.307
.326
.292
.269
.253
.238
.228
.244
.171
.173 | 0.562
.748
.834
.919
1.300
.565
.747
.930
1.107
1.281
1.455
.619
.851
1.114
1.602 | 5240
5325
5350
5295
5000
5265
5265
5170
5040
4945
4795
4995
4480
5150 | 94.5
93.3
93.1
91.7
87.7
94.8
92.3
89.8
87.8
86.2
84.9
89.0
77.9
89.4
81.3 | 50
67
76
86
132
30
41
55
63
76
95
33
32
26
71 | 100
78
68
62
50
58
47
42
36
32
31
51
25
20
21 | | | | | Contrac | tion rat | 10, 2.49; | characteristic 1 | ength, 7 | .5 in. | | | | | 130
136
135
115
116
115
113
115
113 | 0.274
.313
.387
.201
.213
.226
.228
.230
.249
.336 | 0.276
.290
.262
.297
.297
.270
.266
.265
.257 | 0.994
1.080
1.459
.677
.764
.837
.858
.869
.969
1.442 | 5230
5000
4635
5120
5220
5140
5070
5160
4960
4625 | 91.3
86.6
82.4
90.4
91.4
89.2
87.8
89.5
86.0
82.5 | 68
85
125
40
42
47
53
47
61
99 | 58
62
53
67
22
47
49
53
54
43 | | | | | Contrac | tion rat | 10, 2.49; | characteristic 1 | ength, 1 | 0 in. | | | | | 137
137
137
138
117
117
117
118
117
117
113
97 | 0.272
.276
.292
.329
.326
.224
.225
.228
.240
.258
.280
.402
.187
.296 | 0.330
.316
.300
.278
.275
.304
.305
.370
.294
.282
.267
.234
.277
.286 | 0.825
.875
.973
1.183
1.185
.737
.738
.743
.817
.915
1.050
1.717
.675
1.035 | 5270
5330
5310
5150
5220
5240
5220
5170
5220
5150
4970
4180
5020
4030 | 91.7
92.4
91.7
89.4
90.6
91.9
91.6
90.5
90.9
89.2
86.0
76.6
88.7
69.7 | 63
69
87
83
44
44
51
57
66
128
35 | 89
82
74
65
64
75
75
71
67
59
47
649 | | | | | Contrac | tion rat | 10, 2.49; | characteristic l | ength, 1 | 5 in. | | | | | 139
138
139
139
139
136
119
119
119
119
120
99
100 | 0.245
.264
.271
.280
.292
.311
.354
.222
.236
.241
.297
.319
.203
.212
.220 | 0.314
.299
.306
.312
.283
.267
.245
.278
.269
.255
.241
.224
.212
.199
.193 | 0.781
.883
.886
.898
1.031
1.165
1.445
.799
.878
.945
1.232
1.425
.957
1.065
1.140 | 5530
5470
5320
5230
5380
5350
5050
5290
5250
5330
4920
4910
5310
5410
5510 | 96.1
94.6
92.2
90.5
93.0
93.6
92.4
91.0
92.5
85.9
92.0
93.7
95.6 | 61
64
74
71
77
81
114
51
57
58
70
98
153
149
145 | 58
56
58
52
46
39
50
47
40
40
33
133
128 | | | TABLE I. - Concluded. 1.50-INCH-DIAMETER CHAMBER WITH 21-TUBE INJECTOR [Spacing, 0.090 in.] | Chamber pressure, lb/sq in. abs | Oxidant flow, lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | |---|---|---|---|--|--|---|---| | | Contract | ion rati | o, 1.99; c | haracteristic le | ngth, 7. | 5 in. | | | 98
99
99
99
78
78
78
78
78 | 0.219
.228
.242
.261
.327
.137
.148
.147
.298
.305 | 0.279
.273
.258
.243
.243
.271
.270
.257
.258
.238
.221 | 0.785
.835
.938
1.074
1.345
.506
.507
.576
.578
1.252
1.386 | 5180
5210
5220
5170
4590
5040
5050
5080
5040
3930
3910 | 90.4
90.6
90.4
89.6
80.9
92.1
92.2
91.0
90.6
69.7
69.4 | 42
45
51
54
100
19
22
22
22
90
92 | 62
59
54
49
51
61
61
54
54
55 | | | Contract | ion rati | o, 1.99; c | haracteristic le | ngth, 10 | in. | | | 95
95
99
94
103
95
69
69
71 | 0.231
.234
.336
.325
.335
.332
.229
.259
.270
.284 | 0.286
.275
.238
.229
.233
.229
.228
.226
.217
.217 | 0.809
.852
1.411
1.420
1.438
1.450
1.003
1.147
1.242
1.308 | 4870
4945
4580
4500
4790
4490
4005
3770
3860
3750 | 84.8
85.9
80.7
79.7
85.3
79.9
69.4
65.7
67.6 | 45
42
110
45
66
46
45
49
77
85 | 64
61
51
100
122
109
51
71
46
46 | TABLE II. - 1.03-INCH-DIAMETER CHAMBER WITH 21-TUBE INJECTOR [Contraction ratio, 3.00.] | [Contraction ratio, 5.00.] | | | | | | | | | | |---|---|---|--|--|--|---|---|--|--| | Chamber pressure, lb/sq in. abs | Oxidant
flow,
lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | | | | | Spacing, 0.090 in.; characteristic length, 6.15 in. | | | | | | | | | | 267
259
247
259
259
249
261
242
232
211
217
210
208
200
212
206
171
166
173
169
172 | 0.203
.213
.214
.228
.235
.240
.246
.189
.194
.183
.194
.188
.202
.214
.138
.136
.149
.155
.160 | 0.266
.257
.238
.252
.246
.231
.235
.242
.228
.216
.215
.209
.204
.195
.200
.190
.175
.172
.176
.168
.164 | 0.763
.829
.899
.905
.956
1.038
1.048
.895
.848
.903
.904
.951
.964
1.010
1.127
.789
.791
.866
.881
.953
1.037 | 5065
4905
4860
4805
4795
4705
4830
5000
4775
4705
4725
4700
4650
4650
4650
4695
4540
4830
4795
4800
4540
4665
4610 | 88.3
84.0
82.7
81.3
82.5
81.6
81.2
80.2
80.9
83.4
84.6
83.4
85.4
80.4
85.5
80.4
85.6
85.6
85.6
85.6
85.6
85.6
85.6
85.6 | 51
73
64
75
83
121
71
62
59
67
59
61
61
63
83
49
48
55 | 74
80
77
73
60
65
68
64
79
69
69
58
49
47
61
49 | | | | | Spacing | , 0.090 | in.; chara | cteristic length | ı, 9.03 i | n. | | | | | 278
279
278
263
277
288
281
239
238
243
237
237
239
247
250
210
207
204
212
214 | 0.229
.238
.239
.238
.250
.245
.191
.197
.205
.216
.230
.243
.258
.179
.183
.186
.200
.211 | 0.296
.282
.265
.263
.275
.252
.246
.238
.232
.228
.222
.220
.215
.213
.210
.201
.197 | 0.774
.844
.847
.898
.905
.910
.973
.777
.828
.884
.948
1.036
1.105
1.200
.841
.871
.925
1.015
1.110 | 4805
4870
4840
4750
5020
4980
5130
4965
4965
5050
4845
4800
4845
4800
4865
4780
4780
4850
4850 | 83.9
84.4
83.9
82.4
86.9
86.2
86.1
87.6
83.6
83.6
83.6
83.6
83.6
83.6
83.6
83 | 50
56
72
67
77
60
85
60
57
60
69
66
70
68
57
62
59
59 | 91
85
102
83
59
80
95
84
72
75
78
69
61
54
73
73
72
68
66 | | | | | Spacin | ng, 0.09 | O in.; char | racteristic leng | th, 9.65 | in. | T | | | | 250
254
248
248
242
237
221
217
215
219
219
214 | 0.200
.207
.222
.230
.241
.212
.171
.172
.174
.189
.200
.209 | 0.254
.250
.241
.234
.224
.241
.221
.228
.209
.211
.207
.201 | 0.788
.828
.921
.983
1.076
.880
.774
.755
.832
.896
.966
1.040 | 5350
5190
5070
5090
5010
5190
4965
5020
4975
4910
4895
4780 | 93.4
90.2
87.6
87.8
86.4
86.8
87.7
86.4
84.9
84.4 | 43
43
55
79
60
55
40
40
41
52
50
58 | 76
76
77
74
66
82
62
68
63
68
64
63 | | | TABLE II. - Continued. 1.03-INCH-DIAMETER CHAMFER WITH 21-TUBE INJECTOR [Contraction ratio, 3.00.] | | [constant acto, 5.co.] | | | | | | | | | |--|---|---|--|--|--|---|--|--|--| | Chamber pressure, lb/sq in. abs | Oxidant flow, lb/sec | Fuel flow, lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | | | | Spacing, 0.090 in.; characteristic length, 10.7 in. | | | | | | | | | | | 311
311
311
311
311
301
286
285
285
285
285
285
225
250
250
250
236
241
229
239
241
229
239
241
229
231
235
211
205
211
205
211 | 0.200
.236
.262
.291
.319
.350
.230
.192
.246
.272
.299
.326
.190
.219
.242
.259
.283
.190
.188
.190
.193
.204
.200
.232
.255
.276
.184
.194
.223
.236
.260 | 0.357
.310
.274
.255
.240
.229
.242
.332
.260
.236
.222
.216
.248
.230
.212
.195
.187
.252
.227
.219
.213
.216
.209
.200
.191
.183
.235
.205
.193
.177
.170 | 0.560
.762
.957
1.142
1.328
1.528
.951
.579
.760
.947
1.152
1.347
1.510
.766
.952
1.141
1.327
1.513
.754
.795
.828
.867
.881
.944
.957
1.160
1.334
1.506
.783
.947
1.155
1.333
1.530 | 5200
5340
5460
5360
5250
5090
5660
5190
5300
5400
5390
5270
5140
5130
5230
5190
5100
4945
5170
5310
5020
5220
5370
5250
5090
5250
5250
5270
5190
5190
5270
5190
5270
5310
5020
5370
5270
5310
5020
5370
5310
5020
5370
5310
5020
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370
5370 | 93.52
94.05
91.4
92.5
91.4
92.5
93.0
93.0
93.0
93.0
93.0
93.0
93.0
93.0 | 40
54
70
86
107
124
55
52
75
93
110
436
666
844
443
445
422
560
575
613
655
70 | 78
46
41
32
35
67
53
30
45
40
22
44
34
32
32
49
43
43
32
43
43
43
43
43
43
43
43
43
43
43
43
43 | | | | | Spacing | 0.071 | in.; chara | cteristic length | , 6.15 1 | n. | | | | | 294
293
292
299
278
247
244
244
245
255
252
215
209
196
206
204
165
173
173 | 0.255
.264
.273
.282
.253
.218
.217
.216
.230
.237
.247
.183
.189
.189
.188
.195
.214
.138
.140
.145 | 0.306
.305
.289
.289
.265
.262
.259
.252
.251
.244
.233
.226
.210
.218
.206
.221
.213
.212 | 0.833
.866
.945
.976
.885
.823
.828
.834
.913
.944
1.012
.786
.836
.895
.895
.895
.895
.625
.650 | 4690
4610
4655
4690
4620
4580
4560
4600
4550
4680
4600
4625
4515
4410
4465
4350
4115
4390
4340 | 81.4
80.0
80.3
80.9
79.9
79.1
79.8
78.6
80.8
78.2
80.6
78.4
76.2
77.2
74.9
73.2
77.7 | 54
73
83
96
76
60
54
53
81
618
39
52
54
63
48
70
83 | 88
99
94
102
96
89
82
77
105
74
72
55
61
63
60
60
79
82 | | | TABLE II. - Concluded. 1.03-INCH-DIAMETER CHAMBER WITH 21-TUBE INJECTOR [Contraction ratio, 3.00.] | [Contraction ratio, 5.00.] | | | | | | | | |--|---|---|--|--|--|--|--| | Chamber pressure, lb/sq in. abs | Oxidant
flow,
lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | | | Spacing | , 0.071 | in.; chara | cteristic length | , 9.65 1 | n. | | | 192
208
213
212
218
211
217
215 | 0.161
.188
.197
.166
.179
.210
.191 | 0.229
.261
.252
.220
.214
.247
.203
.198 | 0.703
.721
.782
.755
.837
.850
.941 | 4390
4135
4230
4900
4950
4120
4910
4840 | 77.2
72.7
73.8
85.7
85.9
71.4
84.7
83.5 | 64
76
58
68
68
65
73
77 | 82
97
69
85
74
73
75
73 | | | Spacing | , 0.071 | in.; chara | cteristic length | , 10.7 i | .n. | | | 203
224
230
234
232
238 | 0.151
.158
.178
.185
.193
.198 | 0.233
.227
.220
.219
.208
.204 | 0.648
.696
.809
.845
.928 | 4710
5100
5140
5100
5110
5250 | 83.5
89.8
89.4
88.4
88.3
90.4 | 72
34
54
53
62
60 | 57
54
70
64
72
55 | | | Spacing | , 0.100 | in.; chara | cteristic length | , 10.7 1 | n. | T | | 294
294
294
288
244
243
243
243
243
239
193
193
193
193 | 0.296
.297
.337
.354
.309
.219
.227
.238
.240
.267
.198
.196
.230
.230
.240 | 0.295
.290
.250
.228
.220
.233
.231
.237
.219
.220
.225
.250
.213
.210 | 1.002
1.025
1.349
1.551
.405
.940
.984
1.005
1.095
1.213
.880
.957
1.080
1.096
1.200 | 4660
4730
4700
4640
4140
4780
4770
4660
4780
4455
4200
3960
4090
4070
4060 | 80.4
81.6
82.4
83.0
73.2
82.6
82.7
80.6
82.8
77.6
72.9
68.6
70.5
70.7 | (a) | (a) | ^aPressure transducer lines were plugged for this test. TABLE III. - 1.03-INCH-DIAMETER CHAMBER WITH 7-TUBE INJECTOR [Contraction ratio, 3.00; characteristic length, 10.7 in.] | Chamber pressure, lb/sq in. abs | Oxidant flow, lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | |---|---|---|---|--|--|--|--| | | | | Spacing, | 0.201 in. | | | | | 296
297
297
246
249
249
249
246
244
202
200
198
198 | 0.240
.254
.273
.191
.197
.214
.204
.242
.342
.142
.137
.160
.173
.197 | 0.304
.299
.288
.253
.231
.248
.229
.232
.212
.231
.215
.198
.193
.186 | 0.790
.850
.968
.755
.853
.863
.891
1.043
1.613
.615
.638
.808
.897
1.059 | 5030
4965
4895
5120
5150
4985
5090
4800
4071
5005
5250
5110
5000
4780 | 87.7
86.0
84.3
89.5
89.2
86.2
88.0
82.5
73.2
89.1
86.4
82.4 | 52
58
66
36
33
39
38
58
106
21
14
14
27
35 | 64
61
47
53
43
43
43
43
27
42
27
26
23
21 | | | | | Spacing, | 0.100 in. | | | | | 292
292
277
274
255
244
245
245
245
245
245
248
197
193
193 | 0.351
.368
.347
.350
.358
.215
.241
.244
.237
.251
.243
.292
.146
.174
.196
.233 | 0.304
.292
.278
.268
.236
.273
.261
.248
.240
.240
.231
.214
.260
.235
.220 | 1.154
1.259
1.247
1.305
1.516
.787
.924
.987
1.046
1.051
1.365
.562
.741
.891
1.154 | 4495
4460
4465
4470
4325
5040
4900
5000
5180
5030
5210
4940
4890
4755
4675
4470 | 77.6
77.4
77.8
76.8
87.8
84.5
86.0
89.1
86.5
89.5
86.2
87.9
83.2
80.7
77.3 | 148
158
144
141
141
92
71
102
96
106
91
108
50
78
69
84 | 111
97
92
86
64
106
85
96
85
79
66
82
96
76 | TABLE IV. - 1.50-INCH-DIAMETER CHAMBER WITH 45-TUBE INJECTOR [Spacing, 0.070 in.] | Chamber pressure, lb/sq in. abs | Oxidant flow, lb/sec | Fuel
flow,
lb/sec | Oxidant-
fuel
ratio | Characteristic velocity, c*, ft/sec | c*
effi-
ciency | Oxidant
pressure
drop | Fuel
pressure
drop | |---|---|---|--|--|--|--|---| | | Contracti | on ratio | , 6.25; ch | aracteristic len | gth, 5 1 | n. | | | 250
258
269
217
222
216
193
192
188 | 0.237
.284
.341
.184
.231
.230
.161
.226 | 0.260
.237
.230
.290
.267
.243
.242
.230
.212 | 0.911
1.198
1.482
.634
.866
.946
.666
.983
1.175 | 4440
4375
4160
4040
3935
4030
4225
3715
3591 | 76.6
75.5
73.5
71.7
68.2
69.5
74.7
64.1
62.1 | 130
126
65
63
56
72
73
71 | 109
83
37
80
70
66
54
84
84 | | | Contraction ratio, 3.52; characteristic length, 10 in. | | | | | | | | 212
208
209 | 0.387
.424
.470 | 0.305
.281
.271 | 1.269
1.508
1.734 | 4895
4710
4500 | 85.1
83.7
82.3 | 47
38
40 | 109
131
163 | (b) Chamber segments. 16 Figure 3. - Injectors and assembly for 100-pound-thrust rocket motor. (Dimensions in inches.) (a) Injector assembly. **E-1325** Ĺ (b) 45- and 21-tube injector configurations. Figure 3. - Continued. Injectors and assembly for 100-pound-thrust rocket motor. (Dimensions in inches.) (c) 9- and 7-tube injector configurations. Figure 5. - Concluded. Injectors and assembly for 100-pound-thrust rocket motor. (Dimensions in inches.) Figure 4. - Representative flow calibration for all injectors. - (b) 1.50-inch chamber. Figure 5. - Chamber segments. E-1325 Figure 7. - Performance of 23-tube injector with 0.000-inch tube opening. Chamber diameter, 1.03 inches; characteristic length, 10.7 inches; contraction rabio, 3.00. Figure 8. - Mine-tube injector face after burnout. (a) Characteristic Length, 6.15 inches; chamber length, 2.277 inches. (b) Characteristic length, 0.70 inches; chamber length, 3.03 inches. (a) Shower, establish longton 10.70 feeters remaker from the F. of the As. Figure . - Without of this Sign point appears in the who interests. Configuration ratio, $\tau_{\rm e} \cos z$ CZCT-H Contraction ratio Figure 10. - Variation of contraction ratio with chamber pressure for constant total propellant flow. Figure 11. - Effect of chamber pressure on 21-tube injector for several contraction ratios and characteristic lengths. Vacuum impulse, sec Figure 12. - Vacuum specific impulse based on experimental characteristic velocity for 21-tube injector with spacing of 0.090 inch. Chamber diameter, 1.03 inches; characteristic length, 10.7 inches; nozzle area ratio, 50; thrust coefficient, 1.8; ratio of specific heats, 1.30. | | | - | |--|--|---| | | | • | • | - |